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Fig. 1. Making all children jump into the pool together — in post-processing! In the original video (left, top) each child is jumping into the pool at a
different time. In our computationally retimed video (left, bottom), the jumps of children I and III are time-aligned with that of child II, such that they all jump
together into the pool (notice that child II remains unchanged in the input and output frames). In this paper, we present a method to produce this and other
people retiming effects in natural, ordinary videos. Our method is based on a novel deep neural network that learns a layered decomposition of the input
video (right). Our model not only disentangles the motions of people in different layers, but can also capture the various scene elements that are correlated
with those people (e.g., water splashes as the children hit the water, shadows, reflections). When people are retimed, those related elements get automatically
retimed with them, which allows us to create realistic and faithful re-renderings of the video for a variety of retiming effects. The full input and retimed
sequences are available in the supplementary video.

We present a method for retiming people in an ordinary, natural video — ma-
nipulating and editing the time in which different motions of individuals in
the video occur. We can temporally align different motions, change the speed
of certain actions (speeding up/slowing down, or entirely “freezing” people),
or “erase” selected people from the video altogether. We achieve these effects
computationally via a dedicated learning-based layered video representation,
where each frame in the video is decomposed into separate RGBA layers,
representing the appearance of different people in the video. A key property
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of our model is that it not only disentangles the direct motions of each person
in the input video, but also correlates each person automatically with the
scene changes they generate—e.g., shadows, reflections, and motion of loose
clothing. The layers can be individually retimed and recombined into a new
video, allowing us to achieve realistic, high-quality renderings of retiming ef-
fects for real-world videos depicting complex actions and involving multiple
individuals, including dancing, trampoline jumping, or group running.
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1 INTRODUCTION
Bymanipulating the timing of people’s movements, we can achieve a
variety of effects that can change our perception of an event recorded
in a video. In films, altering time by speeding up, slowing down,
or synchronizing people’s motions is often used for dramatizing
or de-emphasizing certain movements or events. For example, by
freezing the motions of some people in an action-packed video while
allowing others to move, we can focus the viewer’s attention on
specific people of interest. In this paper, we aim to achieve such
effects computationally by retiming people in everyday videos.
The input to our method is an ordinary natural video with mul-

tiple people moving, and the output is a realistic re-rendering of
the video where the timing of people’s movements is modified. Our
method supports various retiming effects including aligning mo-
tions of different people, changing the speed of certain actions (e.g.,
speeding up/slowing down, or entirely “freezing” people). In addi-
tion, our method can also “erase” selected people from the video.
All these effects are achieved via a novel deep neural network-based
model that learns a layered decomposition of the input video, which is
the pillar of our method. Note that in this paper we focus solely on
temporal warping. That is, each person’s pose in our output exists
in some frame in the input; we do not generate new, unseen poses
or viewpoints.
Motion retiming has been studied so far mostly in the context

of character animation, for editing a character’s motion to match a
desired duration or target velocity at a given time (e.g., [McCann
et al. 2006; Yoo et al. 2015]). In this paper, we take retiming to the
realm of natural real videos. In the character animation domain, the
main challenge is to retime the motion of a set of joints, with the
spatiotemporal correlations that exist between them. Analogously,
manipulating the timing of people in video not only requires modi-
fying people’s own motions, but also the various elements in the
scene that they “cause” and are correlated with them — shadows,
reflections, the flowing dress of a dancer, or splashing water (Fig. 1).
When we retime people, we need to make sure that all those cor-
relative events in the scene follow properly and respect the timing
changes. Furthermore, unlike character animation, we do not have
any ground truth 3D model of the scene over time; hence, rendering
photorealistic, high-quality retiming effects in video is much more
challenging. More specifically, retiming motions in videos can often
result in new occlusions and disocclusions in the scene. Rendering
the scene content in disoccluded regions and maintaining correct
depth ordering between subjects are essential for achieving a re-
alistic effect. Finally, as in any video synthesis task, achieving a
temporally coherent result is challenging — small errors such as
subtle misalignment between frames immediately show up as visual
artifacts when the frames are viewed as a video.

The core of our technique, which we dub layered neural rendering,
is a novel deep neural-network-based model that is optimized per-
video to decompose every frame into a set of layers, each consisting
of an RGB color image and an opacity matte α (referred to alto-
gether as “RGBA”). We design and train our model such that each
RGBA layer over time is associated with specific people in the video

(either a single person, or a group of people predefined by the user).
Crucially, our method does not require dynamic scene elements
such as shadows, water splashes, and trampoline deformations to be
manually annotated or explicitly represented; rather, only a rough
parameterization of the people is required, which can be obtained us-
ing existing tools with minor manual cleanup for challenging cases.
The model then automatically learns to group people with their
correlated scene changes. With the estimated layers, the original
frames of the video can be reconstructed using standard back-to-
front compositing. Importantly, retiming effects can be produced
by simple operations on layers (removing, copying, or interpolating
specific layers) without additional training or processing.
Our model draws inspiration from recent advances in neural

rendering [Thies et al. 2019], and combines classical elements from
graphics rendering with deep learning. In particular, we leverage
human-specific models and represent each person in the video with
a single deep-texture map that is used to render the person in each
frame. Having a unified representation of a person over time allows
us to produce temporally coherent results.

We demonstrate realistic, high-quality renderings of retiming ef-
fects for real-world videos with complex motions, including people
dancing, jumping, and running. We also provide insights into why
and how the model works through a variety of synthetic experi-
ments.

2 RELATED WORK
Video retiming. Our technique applies timewarps (either designed

manually, or produced algorithmically) to people in the video, and
re-renders the video to match the desired retiming. As such it is
related to a large body of work in computer vision and graphics
that performs temporal remapping of videos for a variety of tasks.
For example, [Bennett and McMillan 2007] sample the frames of
an input video non-uniformly to produce computational time-lapse
videos with desired objectives, such as minimizing or maximiz-
ing the resemblance of consecutive frames. [Zhou et al. 2014] use
motion-based saliency to nonlinearly retime a video such that more
“important” events in it occupy more time. [Davis and Agrawala
2018] retime a video such that the motions (visual rhythm) in the
time-warped video match the beat of a target music.
Other important tasks related to video retiming are video sum-

marization (e.g., [Lan et al. 2018]) and fast-forwarding [Joshi et al.
2015; Poleg et al. 2015; Silva et al. 2018], where frames are sampled
from an input video to produce shorter summaries or videos with
reduced camera motion or shake; or interactive manipulation of
objects in a video (e.g., using tracked 2D object motion for posing
different objects from a video into a still frame that never actually
occurred [Goldman et al. 2008].)
Most of these papers retime entire video frames, by dropping

or sampling frames. In contrast, we focus on people, and people’s
motions, and our effect is applied at the person/layer level. While
many methods exist for processing the video in the sub-frame or
patch level — both for retiming (e.g., [Goldman et al. 2008; Pritch
et al. 2008]) and for various other video manipulation tasks, such
as object removal, infinite video looping, etc. (e.g., [Agarwala et al.
2005; Barnes et al. 2010; Wexler et al. 2007]) — none of these works
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Fig. 2. Layered Neural Rendering. Our neural rendering model decomposes each frame of the video into a set of color (C i
t ) and opacity (α it ) layers. Each

layer is associated with specific people in the video (either a single person, or a group of people predefined by the user). The layers are computed in separate
forward passes by feeding to the neural renderer a deep-texture map that corresponds to a single layer. In particular, we represent each person in the video
with a single deep-texture map T i , and the scene background is represented with a deep-texture map T 0. Given pre-computed UV maps, those deep-texture
maps are resampled and composited to form the input to the neural renderer. The set of estimated layers can then be composited in a back-to-front fashion to
reconstruct the original frames. Retiming effects can be achieved via simple operations on the layers.

can handle automatically correlative motions and changes in the
video such as shadows and reflections.

Manipulating human poses in video. In the context of manipulat-
ing people’s motions, several recent methods have been proposed
for transferring motion between two people captured in different
videos [Aberman et al. 2019; Chan et al. 2019; Lee et al. 2020; Zhou
et al. 2019] or transferring motion from a low-dimensional sig-
nal [Gafni et al. 2020]. However, there are two main distinctions
between these methods and ours: (i) motion transfer methods are
focused on “puppetry” — generating people in new unseen poses
— whereas our method is tailored solely for time warping (we do
not generate new poses); and (ii) existing motion transfer methods
consider only a single person in each video — they do not model
occlusions/disocclusions between multiple people — and with the
exception of [Gafni et al. 2020], they also do not capture the corre-
lations between people and their environment, elements that are
crucial for producing realistic retiming effects.

Image and video matting. Our work is also related to image and
video matting as we decompose each input video frame into a set
of RGBA layers. Nevertheless, both traditional matting techniques
(e.g., [Bai et al. 2009; Chuang et al. 2002; Li et al. 2005; Wang et al.
2005]) as well as more recent learning-based matting methods [Hou
and Liu 2019; Xu et al. 2017] do not capture correlated effects such
as shadows and reflections. Moreover, matting methods typically
rely on accurate trimaps that are often given manually by the user,
whereas we automatically generate rougher trimaps from detected
keypoints. Even though our trimaps are not as accurate, we are
still able to learn complex effects such as loose clothing, even when
such regions are not included in the initial, estimated trimaps. Fi-
nally, existing matting methods cannot handle well entirely semi-
transparent objects like reflections (in matting trimaps, pixels that

are labeled “opaque” are fully assigned to the foreground). We show
comparisons with image matting in Section 6.

Layered representations for video. Decomposing videos into lay-
ers is a classical problem in computer vision originally proposed
in [Wang and Adelson 1994], which has inspired a large body of
work (e.g. [Jojic and Frey 2001; Kumar et al. 2008; Nandoriya et al.
2017; Xue et al. 2015; Zitnick et al. 2004]). Recently, several works
have leveraged the power of deep neural networks to decompose
videos into layers. For example, [Zhou et al. 2018] and [Srinivasan
et al. 2019] train a network on input stereo pairs of images to predict
layers that correspond to physically accurate depth, with the goal
of view synthesis for static scenes. Our layers are not meant to be
strictly accurate in terms of depth, as we do not aim to generate
scenes from novel viewpoints, but rather composite scene elements
from different points of a dynamic video.
Alayrac et al. [2019a; 2019b] train a model to decompose syn-

thetically blended real videos and then apply it to natural videos to
remove reflections, shadows, and smoke. Their method is general
rather than person-specific like ours, and they use audio as a cue
for separating layers, rather than people geometry as we do.
Finally, Gandelsman et al. [2019] extend the idea of “Deep Im-

age Prior” (DIP) networks [Ulyanov et al. 2018] for decomposing
a single image or a video into two layers. Their key observation is
that the structure of a CNN provides a prior that drives each layer
towards a natural image. As above, they have limited control over
their output layers and rely entirely on CNN properties to produce
meaningful layers. Our method also leverages this property of CNNs
(see Section 5), yet provides control over the decomposition, which
is required for retiming effects. Furthermore, their method is de-
signed for two-layer decomposition, and generalizing it to N layers
requires N× learnable parameters. In contrast, our method can pro-
duce an arbitrary number of layers with the same, fixed number of
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network parameters. (We show a comparison with Double-DIP in
the supplementary material.)

Neural rendering. Neural networks have recently begun to be
used as a final rendering layer for 3D scenes [Kim et al. 2018; Liu
et al. 2019; Martin-Brualla et al. 2018; Meshry et al. 2019; Sitzmann
et al. 2019; Thies et al. 2019]. A neural network can be trained to
bridge the gap between incomplete or inaccurate input geometry
and a photorealistic result. Examples of incomplete input are point
clouds [Meshry et al. 2019], voxels [Sitzmann et al. 2019], partial
3D scans or 3D models of humans [Kim et al. 2018; Liu et al. 2019;
Martin-Brualla et al. 2018], and textured proxy geometry [Thies
et al. 2019]. Our work adopts the textured proxy approach — creat-
ing geometric proxies for each person in the scene and texturing
them with a deep texture map [Thies et al. 2019]. Importantly, we
combine this approach in a neural rendering model that outputs a
layered decomposition of each frame of the video. This is in con-
trast to existing neural rendering methods, which output the final
reconstruction directly. Our layered decomposition is the key to
producing realistic high-quality retiming effects, as demonstrated
in Fig. 11 and discussed in detail in Section 6.4.

3 OVERVIEW
A key challenge in generating realistic retiming effects in videos
is ensuring that when people’s motions are retimed, their related
effects in the scene follow with them. For example, if we freeze a
person, their shadow should freeze as well.

We achieve this via a learning-based approach, which, at its core,
decomposes each frame of the input video into a human-specific set
of layers. That is, each layer is associated with specific people in the
video—either a single person, or a group of people (Section 4.1). A
key feature in our approach is that only the people in the video are
modeled explicitly, while the rest of the scene elements correlated
with each person are inferred automatically by our layered neural
rendering pipeline.

Our pipeline is illustrated in Fig. 2. Our model is trained per-video,
observing only the input video (without any additional examples),
and is trained in a self-supervised manner, by learning to recon-
struct the original video frames by predicting the layers (Section 4.2).
We use off-the-shelf methods (AlphaPose [Fang et al. 2017], Dense-
Pose [Güler et al. 2018]) in combination with our own techniques to
represent each person at each frame (Section 4.5). This representa-
tion is then passed on to the neural renderer and is used for seeding
the layer assignment (person per layer). While the input to the neu-
ral renderer includes only the people (and a static background), the
renderer’s task is to generate layers that reconstruct the full input
video. Thus, it must assign all the remaining, time-varying scene
elements (e.g., shadows, reflections) into the appropriate peoples’
layers.

The neural renderer succeeds in this task because the network de-
sign and training procedure (Section 4.3) encourages scene elements
that are correlated with a layer to be captured faster (reconstructed
earlier in training) than non-correlated elements. This property is
related to the “Deep Image Prior” (DIP) work [Ulyanov et al. 2018],
which showed that overfitting a network to a natural image required
fewer gradient descent steps than fitting a noise image. We further

explore how correlated effects are captured in the correct layers
through synthetic experiments in Section 5.

4 METHOD

4.1 A Layered Video Representation
Given an input videoV , our goal is to decompose each frame It ∈ V
into a set of RGBA (color + opacity) layers:

Lt = {Lit }
N
i=1 = {Cit ,α

i
t }

N
i=1, (1)

where Cit is a color image and α it is an opacity map (matte). The
ith layer for all frames Li∗ is associated with person i in the video.
We add an additional background layer L0

t , not associated with any
person, that learns the background color.

Given this layered representation and a back-to-front ordering for
the layers, denoted by ot , each frame of the video can be rendered
using the standard “over” operator [Porter andDuff 1984].We denote
this operation by:

Ît = Comp (Lt ,ot ) (2)
We assume that the compositing order ot is known, yet time vary-

ing, i.e., the depth ordering between people may change throughout
the video (see Section 4.5).

A key property of this representation is that retiming effects can
be achieved by simple operations on individual layers. For example,
removing person i from frame t can be done simply by removing
the ith layer from the composition, i.e., by substituting in Lt \ L

i
t

into Eq. 2. Similarly, generating a video where person i is frozen
at a time t0 is achieved by copying Lit0

over Lit for all frames. We
expand on other operations in Section 6.

4.2 Layered Neural Rendering
Decomposing a real-world video into a desired set of layers is a
difficult, under-constrained problem – there are numerous possible
decompositions that can provide an accurate reconstruction of the
original frame It . For example, a single visible layer that contains
the entire frame can perfectly reconstruct the video. We therefore
constrain our layered neural renderer to steer the solution towards
the desired person-specific decomposition. We do so in several ways
including incorporating human specific representations, tailoring
the input to the network, and applying dedicated losses and training
regimes.
As mentioned in Section. 3, the layers are predicted in separate

feed-forward passes through the neural renderer, where the input
for each pass represents only one person (or a pre-defined group
of people). In doing so, we control the association of people with
the output layers. More specifically, we construct the input to the
renderer as follows:

Person representation. We parameterize each person in the video
with a single human texture atlasT i and a per-frame UV-coordinate
map UV i

t , which maps each pixel in the human region in frame
It to the texture atlas. We use the parameterization of the SMPL
model [Loper et al. 2015] that can be estimated from an input image
using existing methods (e.g., DensePose [Güler et al. 2018]). This
provides a unified parameterization of the person over time and
a convenient model for appearance and geometry. We follow a
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(a) Original Frame (b) Background Layer (c) Representative People Layers

Fig. 3. Example layer decompositions by our model. For each example, we show (a) an original frame from the video, (b) the predicted background layer,
and (c) two representative (RGBA) layers associated with people (in Ballroom and Splash, third and forth rows, respectively, the grouping of people into layers
was specified manually; in the other examples each person is assigned to a separate layer). Our model successfully disentangles the people into different layers
along with the visual changes they cause on the environment, such as trampoline deformations, shadows, reflections, and water splashes. (Artifacts at the
bottom of the background layer in the pool scene (bottom row) are due to the fact that those regions are never visible in the input video.)

similar approach to Thies et. al. [2019] and replace the classic RGB
texture map with a learnable, high-dimensional texture map, which
can encode more powerful and richer appearance information. The
deep texture maps are then decoded into RGB values using a neural
rendering network. To represent person i at time t , we sample its
deep texture map T i usingUV i

t , obtaining T
i
t .

Background representation. The background is represented with
a single texture map T 0 for the entire video. Sampling from the
background is performed according to a UV mapUV 0

t . For a static
camera, UV 0

t is an identical xy coordinate grid for all frames. If
homography transformations estimated from camera tracking are
available (see Section 4.6), UV 0

t is the result of transforming an xy
coordinate grid by the homography for frame t .

Input-Output. To construct the input, we place the background’s
UV map behind each person’s UV map to provide background con-
text for the renderer (see Fig. 2). That is, the input for layer i at time
t is the sampled deep texture map T it , which consists of person i’s
sampled texture placed over the sampled background texture. Each

of the re-sampled texture layers {T it
N
i=1} as well as the background

re-sampled texture is fed to the renderer separately. The output is
Lit = {Cit ,α

i
t }, the time-varying color image and opacity map for

that layer, respectively.
The neural renderer is trained to reconstruct the original frames

from the predicted layers, using Eq. 2. The depth ordering of the
people layers, which may vary over time, is provided by the user. To
accurately reconstruct the entire original video, the neural renderer
must reconstruct any space-time scene element that is not repre-
sented by the input UV maps, such as shadows, reflections, loose
clothing or hair. Crucially, disentangling people into separate inputs
is key for guiding the neural renderer to assign those scene elements
into the layers with which they are most strongly correlated in space
and/or time (e.g. attached to a person, moves like the person, etc.).
We expand on this in greater detail in Section 5.
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Occluded Person

DensePose UVs Our UVs
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(b) (c)

Predicted Layer Predicted Layer

Fig. 4. Full-body UVs. Existing tools such as DensePose [Güler et al. 2018]
provide UV coordinates only for fully visible regions. In contrast, our method
is able to produce full-body UVs for occluded people by detecting and
interpolating keypoints, then passing the occluded person’s full skeleton
to a trained network that converts it to a UV map. This allows us to create
editing effects that require disoccluding people.

4.3 Training
We now turn to the task of learning the optimal parameters θ of the
neural renderer, and the set of latent textures {T i }Ni=0 by optimizing
the learned decomposition for each frame.
One necessary property of the learned decomposition is that it

will allow us to accurately reconstruct the original video. Formally,

Erecon =
1
K

∑
t

∥It −Comp(Lt ,ot )∥1, (3)

where Lt are the output layers for frame t , ot is the compositing
order, and K is the total number of frames.
The reconstruction loss alone is not enough to make the opti-

mization converge from a random initialization, so we bootstrap
training by encouraging the learned alpha maps α it to match the
people segments that are associated with layer i . To do so, we apply
the following loss:

Emask =
1
K

1
N

∑
t

∑
i
D(mi

t ,α
i
t ), (4)

wheremi
t is a trimap derived from the UV mapsUV i

t (see Fig. 10),
and D( ) is a distance measure. Masks are trimaps with values in
[0, 0.5, 1], where the uncertain area is produced by morphological
dilation of the binary UV mask. For a trimapm, let b0 be the binary
mask of the pixels wherem = 0, with b1 defined likewise. Losses in
the positive and negative regions are balanced while the uncertain
area is ignored. The distance measure is:

D(m,α) =
∥b1 ⊙ (1.0 − α)∥1

2 ∥b1∥1
+

∥b0 ⊙ α ∥1
2 ∥b0∥1

(5)

where ⊙ is the element-wise (Hadamard) product.
Since the UV mask does not include information from correlated

effects such as shadows and reflections, Emask is only used to boot-
strap the model and is turned off as optimization progresses.

We further apply a regularization loss to the opacities α it to en-
courage them to be spatially sparse. This loss is defined as a mix of
L1 and an approximate-L0:

Ereg =
1
K

1
N

∑
t

∑
i
γ


α it 

1 + Φ0(α

i
t ) (6)

where Φ0(x) = 2 · Sigmoid(5x) − 1 smoothly penalizes non-zero
values of the alpha map, and γ controls the relative weight between
the terms.

Our total loss is then given by:

Etotal = Erecon + γmEmask + βEreg, (7)

where γm and β control the relative weights of the terms.
As usual with non-linear optimization, the results are sensitive to

the relative weights of the error terms. To produce the results in this
paper, we vary the loss weights based on the current epoch e and the
“bootstrap” epoch eb , which is the first epoch where Emask < 0.02:

γm =


50 e ≤ eb
5 eb < e ≤ 2eb
0 otherwise

γ =

{
2 e ≤ 200
0 otherwise β = 0.005 (8)

This schedule puts a heavy initial loss on the masking term to
force the optimization towards a plausible solution, then relaxes
it to allow the optimization to introduce effects not present in the
masks.

4.4 High-Resolution Refinement and Detail Transfer
We take a multi-scale approach and first train our model using Eq. 7
on a downsampled version of the original video. We then upsample
the result to the original resolution using a separate lightweight
refinement network, which consists of several residual blocks (see
Appendix for details) operating on each RGBA layer separately.

We can avoid the additional expense of training with perceptual
and adversarial losses by directly transferring high-resolution de-
tails from the original video in a post-processing step. The residual
between the neural renderer output and the video defines the detail
to transfer, and the amount of the residual to transfer to each layer
is determined by the transmittance map τ it :

τ it = 1.0 − Compα (Lt \ {L
j
t | j < i},ot \ {j | j < i}) (9)

whereCompα denotes the alpha channel of the composite produced
by the neural renderer. The final layer colors are:

Cit = Cnr
i
t + τ

i
t (It − Comp(Lt ,ot )) (10)

where Cnr is the color produced by the neural renderer. See supple-
mentary material (SM) for visualizations. Given this transfer, the
upsampling network needs only to refine the predicted alpha mattes
and produce reasonable colors in occluded regions, where ground-
truth high-frequency details are not available. For pixels with no
occlusion and a predicted alpha value of 1, this high-frequency
transfer amounts to using the original RGB pixel.

4.5 Keypoints-to-UVs
Estimating people UV maps from images can be done via off-the-
shelf methods (e.g., DensePose [Güler et al. 2018]). However, using
such methods directly has two main drawbacks:
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(c) Representative time warp curves

Fig. 5. Automatic motion alignment. People jumping on trampolines are motion-aligned to the little girl in the front left, such that they all jump in sync.
(a) Top: motion signals for the different people in the video, taken as the normalized y-coordinate of the center of mass of each person over time, as computed
from each person’s tracked keypoints. Bottom: time-warped motion signals, after aligning each one to the motions of the little girl (black line in the plots)
using Correlation Optimized Warping [Tomasi et al. 2004] (a variation of Dynamic Time Warping). (b) Each column shows corresponding frames from the
input video (top), and from the output, retimed video (bottom). (c) Two estimated time warps, aligning two of the jumpers with the jumps of the front little girl.

(1) Disoccluded people: Video retiming effects often result in dis-
occlusions of people whowere partially or even fully occluded
in the original frames. Because we model the appearance of
a person with a single texture map that is learned jointly for
the entire video, we can render disoccluded content as long
as we can correctly sample from it. Thus, we want to ensure
that all UV maps represent the full body of each individual,
even in the presence of occlusion. Existing methods, how-
ever, provide an estimate only for the visible human regions
(Fig. 4(a)).

(2) Robustness: Existingmethods tend to suffer from erratic errors
such as missing body parts, especially in the presence of
motion blur, noise or occlusion (see SM for examples). Due to
their dense nature, temporally filtering or interpolating UV
maps in order to remove such errors is challenging.

To overcome these limitation, we train a neural network that
predicts clean full-body UV maps from human keypoints. Keypoint
estimators such as AlphaPose [Fang et al. 2017] tend to be more
robust, and unlike UV maps, can easily be interpolated and man-
ually corrected. To train our keypoint-to-UV model, we use the
Let’s Dance Dataset [Castro et al. 2018], curated to contain only
single-person video frames, and our own filmed video of approxi-
mately 10 minutes of a single person doing a variety of poses. We
then generate approximately 20K keypoint-UV training examples in
which people are fully visible, by running AlphaPose and DensePose
on the original frames. We follow a similar training regimen as in
[Güler et al. 2018]; see Appendix for further details.
At test time, we can estimate full-body UV maps even in the

presence of significant occlusions: we first estimate keypoints using
AlphaPose, track the keypoints using PoseFlow [Xiu et al. 2018],
and linearly interpolate occluded keypoints. The trained keypoint-
to-UV network then processes these keypoints to generate complete
UV maps (Fig. 4(b)). In challenging cases, current state-of-the-art

keypoint detectors and trackers can still fail due to motion blur,
occlusions, or noise. For the results in this paper, we manually fixed
these errors using a rotoscoping tool for between zero and 10%
of input frames, taking a maximum of 30 minutes for particularly
troublesome videos. See SM videos for examples of keypoint edits.

4.6 Camera Tracking
When the input video contains a moving camera (as is the case with
all our video examples), we first estimate the camera motion us-
ing a feature-based tracking algorithm similar to the one described
in [Grundmann et al. 2011]. We model the camera motion at each
frame using a homography transformation, which we estimate ro-
bustly from matched ORB features [Rublee et al. 2011] between
frames. When stabilizing small camera motions or natural hand
shake, we compute the homographies between each frame and a
single reference frame (which works better than tracking the cam-
era over time), then use them to stabilize the input video. When
the video contains large camera motion or substantial panning, we
estimate homographies over time between consecutive frames, use
them to register all the frames with respect to a common coordi-
nate system, then apply this coordinate system transformation to
the background UV map to preserve the original camera motion.
Retiming a layer from frame t to t̄ is achieved by transforming the
layer to the common coordinate system using the transformation at
t , then applying the inverse transformation at t̄ .

5 WHY IT WORKS
As discussed in Section 4.3, our training ensures that specific people
are assigned into specific layers (by bootstrapping the predicted
alpha mattes with rough people trimaps), whereas effects outside
the human trimap region, such as shadows and reflections, are
learned incrementally as the network trains. But how does the
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Fig. 6. Synthetic examples for testing effects of motion correlation
and spatial proximity. In video 1, one square moves smoothly with the
person while the other is randomly placed. The smoothly moving square is
reconstructed earlier in training than the random square. In video 2, two
squares have the same motion but one is closer to the person. The closer
square is reconstructed earlier in training.

model manage to associate such scene elements with the correct
layers?
Single person and their correlated effects. The reason for this suc-

cessful assignment stems from properties of CNNs. Specifically,
space-time scene elements that are most strongly correlated with
the input are reconstructed earlier in training (i.e., require smaller
changes to the network weights) than non-correlated elements. To
illustrate this, consider the synthetic sequences shown in Fig. 6 (the
full videos are available in the SM). A person is superimposed on
a fixed background along with two green squares. The first video
examines correlations in motion and the second examines corre-
lations in space (proximity). In the first video, one square moves
consistently left-to-right behind the person, while the other is ran-
domized around the person. The network first learns to reconstruct
the static background and person, then the correlated square, and
finally the random square. In the second video, two squares have
the same motion, but one is closer to the person. The closer square
is reconstructed earlier in training than the farther square.
This behavior is tightly related to the “Deep Image Prior” (DIP)

principle [Ulyanov et al. 2018]. An image is represented by the pa-
rameters of a CNN by “overfitting" it with gradient descent until
the network output matches the image. Importantly, it was shown
that fitting a natural image (which contains repetitive patches) takes

(a) Representative input frames

(c) Predicted foreground layers(b) Input frames

Fig. 7. A synthetic example demonstrating assignment into layers.
(a-b) A woman (in red) is translating from left to right together with a green
square next to her. Similarly, a man (in blue) is oscillating up and down
with a yellow square next to him. (c) With gradient descent iterations, each
person layer “grabs” more quickly the square that is closest and moves most
similarly to it (see Fig. 6). The squares are consistently assigned into each
person’s layers throughout the video, even in the presence of occlusions
between the people and squares.

fewer iterations than fitting a random noise image (or a natural
image corrupted by noise). In our case, effects that are closely corre-
lated with a person in space, time, or both, are learned more quickly
than other effects. Our synthetic examples and results on natural
videos support this observation.

Assigning the correct effects to multiple people. When there are
multiple people present in the video, each person layer needs to
“grab” the scene elements that are correlated with it. This assign-
ment is achieved via our training regime and the construction of
the input to the network. The renderer sees one layer’s UV coordi-
nates at a time, so must explain each missing scene element using
only the information from a single person (or preselected group
of people). Because correlated effects are learned faster than un-
correlated effects, each person layer will “grab” the effects that are
most correlated with it before the other layers do. Once an effect
is reconstructed in a layer, the reconstruction loss for that effect is
minimized and no gradient encourages the effect to be learned in
other layers. In practice, this means that loose clothing, shadows, re-
flections, or other effects that are most strongly correlated with the
person creating them, are likely to be decomposed into the correct
layer.
Fig. 7 shows such a synthetic, two-person example. The second

green square from the synthetic sequence in Fig. 6 is replaced by a
second person (a man in blue), who has a yellow correlated square.
The motions of the two people are uncorrelated: a man (in blue)
oscillates vertically while a woman (in red) translates horizontally.
We bootstrap each layer with its respective person’s trimap and
train the network to reconstruct the video. The network learns to
reconstruct the green square in the woman’s layer, and the yellow
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Fig. 8. Retiming and editing results for person removal (top) and motion freeze (bottom). For each example (pairs of rows) we show sample frames from
the original video (top row) and their corresponding retimed/edited frames (bottom row).

square in the man’s layer. Further, the yellow square (and the man)
are fully reconstructed, even for frames where they were occluded
by the woman or the green square.
Note that if instead of the layered input, the network sees the

entire scene at one time (similar to [Thies et al. 2019]), the network
learns to explain the missing scene elements using combinations
of people, not individuals. Artifacts then appear when individuals
are retimed to form a new combinations not seen during training
(Fig. 11).

6 RESULTS
We tested our method on a number of real-world videos, most of
which are captured by hand-held cellphone cameras (either captured
by us or taken from the Web). All the videos depict multiple people
moving simultaneously and span a wide range of human actions
(e.g., dancing, jumping, running) in complex natural environments.
Representative frames from these videos are shown in Figs. 1, 3

and 8, and the full input and output sequences are available in the
supplementary material.
We implemented our networks in PyTorch and used the Adam

optimizer [Kingma and Ba 2014] with a learning rate of 1e − 3.
Depending on video length and number of predicted layers, total
training time took between 5 and 12 hours on 2 NVIDIA Tesla P100
GPUs. See Appendix A.1 for further implementation details.

6.1 Layer Decomposition
Several of our layer decompositions are visualized in Fig. 3. For
Ballroom and Splash, we group certain people into one layer; for
all other videos, each person is assigned with their own layer. For
all the videos, our model successfully disentangles the people into
the layers. The layers capture fine details such as loose hair and
clothing (e.g., foreground dancer’s white dress in Ballroom), or ob-
jects attached to the people (e.g., children’s floaties in Splash). This
is in spite of initializing our model with a rough people UV map
without explicitly representing these elements. This ability of our
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Representative input frames from a moving camera sequence

Our result (duplicating the girl in purple, freezing the girl in blue)

Fig. 9. Cartwheel. In the original video, the camera is panning. In our
edited result, we preserve the original camera motion, while duplicating the
girl who performs the cartwheel and freezing the girl in blue so that she
remains in the frame rather than moving offscreen.

model to accurately segment the people regions is also illustrated
more closely in Fig. 10.

Furthermore, the predicted layers successfully correlated the peo-
ple with other nontrivial visual time-varying scene elements that
are related to them—for example, shadows cast on the floor by the
different dancers (Ballroom), complicated reflections of two people
crossing each other (Reflections), surface deformation (Trampoline),
or water splashes (Splash) caused by people’s motion.

6.2 Retiming and Editing Results
With the predicted layers in hand, we produced a variety of retiming
and editing effects via simple operations on the layers. We show
several such retiming results in Fig. 1, Fig. 5, and Fig. 8 (full videos
are available in the SM).

In Fig. 1 and Fig. 5, we have multiple people performing a similar
action, but their motions are not in sync. In Fig. 1, the children jump
into the pool one after the other, whereas in Fig. 5 the periodic mo-
tions of the people jumping are independent. In both examples, we
retime the people to align their motions. For Splash, several align-
ment points defined manually were sufficient to align the children’s
jumps. In Trampoline, because of the periodic nature of the motion,
the alignment is performed automatically using Correlation Opti-
mized Warping [Tomasi et al. 2004] (a variation of Dynamic Time
Warping). Notice how all the time-varying scene elements caused
by the people—water splashes as they hit the water, trampoline
deformations as they bounce on it—follow automatically with them
in our retimed results.

We can also use our method to “freeze” people at a certain point in
time, while letting other people move as in the original video. This
allows viewers to focus their attention on the moving people while
ignoring the rest of the motions in the original video. In Ballroom
(Fig. 8), we freeze the dancing couple in the back throughout the
video, while the couple in front keeps moving. Here too, the shadows
and reflections on the floor move realistically with the moving
couple, while the shadows of the background couple remain static.

Furthermore, disoccluded regions of the back couple are realistically
rendered.
In Kids Running (supplementary material), we show how our

model can scale to multiple layers (8) to produce complex retim-
ing effects involving many people. We retime the original video,
where the kids are crossing the faint finish line on the ground at
different times, to produce a ‘photo-finish’ video, where all the kids
cross the finish line together. We achieve this result by slowing
down the layers of the children that run offscreen. Even though this
sequence involves many individuals, our model is able to obtain
clean mattes for each child. In addition, occluded people and large
occluded regions in the background are realistically inpainted, all
while handling significant motion blur that exists in the input video.

As mentioned, in addition to retiming effects, our method can
also support easy removal of people in video—a byproduct of the
layered representation we use. In Reflections, we demonstrate person
removal in a video containing two people crossing paths in front of
a window. Here our model manages to perform several nontrivial
tasks: it completely disoccludes the person walking in the back; it
associates each person properly with their reflection and shadow;
and it disentangles the two reflections when they overlap (despite
the fact that none of these elements are represented explicitly by the
model). Consider generating such a result with a traditional video
editing pipeline: the reflections would have to be tracked along
with the people to perform proper removal; the person in the back
would have to be manually inpainted at the point where they are
occluded by the person in front. The advantage of our method is
that by merely inputting UVs for each person in a separate layer,
and turning those layers ‘on and off’, we can achieve the same result
with significantly less manual work.

In Fig. 9, we show an example where the original camera motion
is preserved in our retimed result (see Section 4.6) – the girl on the
left is duplicated with a short time offset between each of her copies,
and the girl on the right is frozen, all while the camera is panning
as in the original video.

6.3 Comparisons
We compare our method to state-of-the-art learning-based image
matting [Hou and Liu 2019] and Double-DIP [Gafni et al. 2020] in
Fig. 10. Matting methods are unsuitable for retiming because they
fail to capture desired effects outside of the trimap region. To capture
such effects using matting would require annotating the trimap to
represent these regions. Our method, however, is not strictly bound
by the trimap, as we use it to bootstrap our training only in the
initial epochs, after which the optimization is allowed to grow the
matte to encompass regions beyond the trimap border. Thus, we
can capture complex effects without explicitly representing them in
the trimap, merely by representing the human region coarsely using
automatically generated trimaps. While Double-DIP is similarly
unbound by the trimap region, it fails to segment the entire bicycle.

6.4 Ablations
We ablate components of our method, specifically the keypoint-to-
UV network and layer decomposition.
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(d) Double DIP
[Gandelsman et al. 2019]

(c) Image Matting
[Hou and Liu 2019]

(e) Ours(a) Original Frame (b) Trimap for (c) and (e)

Fig. 10. Comparison with matting and Double-DIP. We obtain trimaps from a mask of the person’s UV; the gray pixels represent a dilated region around
this mask for which the matching loss is ignored. Matting is insufficient for our retiming task because it fails to capture correlated effects that are not included
in the input trimap (e.g. the bicycle). Unlike matting, our final model prediction is able to move beyond the bounds provided by the coarse trimap to produce a
more accurate segmentation mask that includes correlated regions. While Double-DIP is not limited by trimap bounds, it fails to segment the entire bicycle.

(b) Our Layered Model

Reconstruction Editing (Remove)

(a) Non-layered Model

Fig. 11. Layered vs. non-layered neural rendering. Removing the layer
decomposition component of our model results in a lack of generalization
ability. While both models are able to reconstruct the original video, the
non-layered model struggles to disentangle people and their correlations
(reflection in right column is not fully removed when the person is removed).

6.4.1 Keypoint-to-UV network vs. DensePose. We compare layer
decomposition results from using our keypoint-to-UV network to
predict UV maps versus using DensePose outputs directly (Fig. 4).
In the case of partial occlusion, our UV maps manage to complete
the occluded regions of the person, while the DensePose UVs fail to
complete the face and the left arm. In a more extreme case where the
person is fully occluded, but their reflection is visible, it is crucial
to generate a UV map for that person not only for the purposes of
disocclusion, but because any visible effects such as their reflection
or shadows will be incorrectly reconstructed in the layer of the
visible person (as the fully occluded UV will be indistinguishable
from the background-only UV). Thus we disocclude UVs by using
keypoints as an intermediate representation that allows for more
robust estimation and straightforward interpolation.

6.4.2 Layered vs. Non-Layered Neural Rendering. We compare our
method to a non-layered model, i.e., a model that takes as input a sin-
gle sampled texture map representing all the people in the frame as
well as the background, and directly outputs an RGB reconstruction
of the frame. This baseline follows the deferred neural rendering
approach [Thies et al. 2019] .

Fig. 11 shows a reconstruction and editing result produced by
the non-layered model. As can be seen, the non-layered model can
reconstruct the original frames fairly well despite the missing in-
formation and noise in the UV maps. This aligns with the results
demonstrated in [Thies et al. 2019]. However, when editing is per-
formed, the non-layered model performs poorly and is unable to
generalize to new compositions of people, as evident by the partial
reflection artifact. The main reason is twofold: (i) To produce editing
effects, the model is required to generalize to new UV compositions
of people in configurations that were never seen during training;
thus it struggles to produce realistic-looking results based solely
on L1 reconstruction loss. Our approach avoids this generalization
issue because editing is performed as post-processing on the pre-
dicted layers—the same outputs produced during training. (ii) When
the input to the model is a composition of all the people in the frame
rather than separated UVs, the model can easily reconstruct the orig-
inal frame without necessarily capturing meaningful correlations
since it is not required to disentangle separately moving parts of
the scene. This can be seen where the non-layered model struggles
to learn the correct relationships between the different people and
their reflections.

Another benefit of the layered representation is that we can trans-
fer high-resolution details from the input video to each layer, as
described in Section 4.4. Because the non-layered model produces
the retimed result directly, there is no opportunity to transfer de-
tail from the input video prior to retiming. Achieving comparable
quality with the non-layered model would likely require extensive
training time and additional loss functions.

6.5 Limitations
While our system manages to decompose scenes quite well—even
surprisingly so—in some scenes the results may not be perfect. Here
we point out some of the limitations that we have observed.

For a particularly difficult section of the Splash video, part of the
large water splash caused by the child who is underwater in Layer
1 is incorrectly placed in Layer 2 (Fig. 12). However, this error can
be fixed by manually editing the initial trimap masks for Layer 1
to include the entire splash (top right, Fig. 12). Such editing can be
done very quickly when needed, requiring only rough marking on
a few of the frames (a single trimap in this example).

Another type of artifact that may occur is when the scene includes
time-varying background elements that are not correlated with any
of the people of interest in the video. For example, since we assume a
static background, the colorful blinking lights in the Ballroom video
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Before Mask Edit

Mask Border

Layer 1

Layer 2

After Mask Edit

Fig. 12. User-guided trimaps. In some particularly difficult segments, the
assignment of effects to layers may be incorrect, e.g., some parts of the
splash caused by the child who is underwater are incorrectly assigned to
Layer 2 (yellow arrow). The user can correct such errors by simple manual
editing of the initial trimaps. Here, we expand the initial trimap to include
the entire splash region (red outline); this was done for only one layer of
one frame, and then duplicated for a segment of the video.

must be included in one of the foreground layers. As can be seen in
Fig. 3, the purple light appears in the front couple’s layer, making it
impossible to retime them separately. This artifact could be remedied
by adding a separate layer to represent the dynamic background
elements in addition to the layers for the dancing couples.

7 CONCLUSION
Wehave presented a system for retiming people in video, and demon-
strated various effects, including speeding up or slowing down dif-
ferent individuals’ motions, or removing or freezing the motion
of a single individual in the scene. The core of our technique is
learned layer decomposition in which each layer represents the full
appearance of an individual in the video — not just the person itself
but also all space-time visual effects correlated with them, including
the movement of the individual’s clothing, and even challenging
semi-transparent effects such as shadows and reflections.

We believe that our layered neural rendering approach holds great
promise for additional types of synthesis techniques, and we plan to
also generalize it to other objects besides people, and to expand it to
other non-trivial post-processing effects, such as stylized rendering
of different video components.
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A APPENDIX

A.1 Implementation Details
Neural texture. We use a neural texture with 16 channels, where

each body part and the background are represented by an atlas
with 16 × 16 pixel dimensions. As in the DensePose work, we
adopt the SMPL representation, which uses 24 body parts. Thus
the dimensions of our neural texture, for a video with N people, is

16 × 16 × 16 ∗ (24N + 1). Empirically we found that increasing the
texture resolution did not improve results.

Training on low-resolution. For each video, we first train the neu-
ral renderer and neural texture for 2500 epochs at a video size of
448 × 256 (or 352 × 256 for the Ballroom sequence only). The input
to the neural rendering network is the sampled neural texture con-
catenated with a map representing the person ID at each pixel (or
0 for background). We apply brightness and spatial jittering to the
video frames as data augmentation. Brightness jittering is turned
off after 400 epochs to allow the network to faithfully reconstruct
the original video. We also employ curriculum learning, where we
train only on the easier half of the frames for the first 1k epochs.
We rank difficulty by computing the IoU of every pair of layers’
positive trimap regions, using distance of bounding box centers as a
tie-breaker. The goal of this curriculum is to withhold the more dif-
ficult frames that contain overlapping people, because of the greater
ambiguity in learning correlations.

Upsampling low-resolution results. After training the neural ren-
dering module, we obtain a high-resolution result by freezing the
trained parameters and training an additional upsampling network.
This lightweight upsampling network is trained for 500 epochs with
only L1 reconstruction loss, sampling random 256 × 256 crops for
upsampling due to memory constraints. The final output of the
upsampling network has dimensions double the size of the low-
resolution output. We apply the detail transfer step described in
Section 4.4 to these final outputs.

A.2 Network Architectures
In all networks, zero-padding is used to preserve the input shape. ‘bn’
refers to batch normalization. ‘in’ refers to instance normalization.
‘convt’ refers to convolutional transpose. ‘leaky’ refers to leaky
relu with slope -0.2. ‘skipk’ refers to a skip connection with layer
k . ‘resblock’ denotes a residual block consisting of conv, instance
norm, relu, conv, instance norm.

A.2.1 Neural renderer. The neural renderer architecture is a modi-
fied pix2pix network [Isola et al. 2017]:

layer type(s) out channels stride activation
1 4 × 4 conv 64 2 leaky
2 4 × 4 conv, bn 128 2 leaky
3 4 × 4 conv, bn 256 2 leaky
4 4 × 4 conv, bn 256 2 leaky
5 4 × 4 conv, bn 256 2 leaky
6 4 × 4 conv, bn 256 1 leaky
7 4 × 4 conv, bn 256 1 leaky
8 skip5, 4 × 4 convt, bn 256 2 relu
9 skip4, 4 × 4 convt, bn 256 2 relu
10 skip3, 4 × 4 convt, bn 128 2 relu
11 skip2, 4 × 4 convt, bn 64 2 relu
12 skip1, 4 × 4 convt, bn 64 2 relu
13 4 × 4 conv 4 1 tanh

A.2.2 Upsampling network. The upsampling network predicts a
residual image for each bilinearly upsampled RGBA layer predicted
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by the neural renderer. The network input is the bilinearly upsam-
pled (to the desired output size) concatenation of (1) the predicted
low-resolution RGBA, (2) the sampled texture input, and (3) the final
feature maps output by the neural renderer preceding the RGBA
output layer. The RGBA outputs of the upsampling network are then
composited according to ot . The upsampling network architecture
is as follows:

layer type(s) output channels stride activation
1 3 × 3 conv, in 64 1 relu
2 3 × 3 resblock 64 1 relu
3 3 × 3 resblock 64 1 relu
4 3 × 3 resblock 64 1 relu
5 3 × 3 conv 4 1 none

A.2.3 Keypoints-to-UVs. The keypoint-to-UV network is a fully
convolutional network that takes in an RGB image of a skeleton
and outputs a UV map of the same size. The architecture is the
same as the neural renderer architecture, with the exception of the
final layer, which is replaced by two heads: 1) a final convolutional
layer with 25 output channels to predict body part and background
classification, and 2) a convolutional layer with 48 output channels
to regress UV coordinates for each of the 24 body parts. As in the
DensePose work [Güler et al. 2018], we train the body part classifier
with cross-entropy loss and train the predicted UV coordinates with
L1 loss. The regression loss on the UV coordinates is only taken
into account for a body part if the pixel lies within the specific part,
as defined by the ground-truth UV map.
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